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J. Phys. A: Math. Gen. 17 (1985) 1093-1109. Printed in Great Britain 

Critique of the replica trick 

J J M Verbaarschot and M R Zirnbauer? 
Max-Planck-Institut fur Kemphysik, Heidelberg, West Germany 

Received 6 August 1984 

Abstract. It is shown that the replica trick fails to give the correct non-perturbative result 
for the two-point function Sz of the Gaussian unitary ensemble of N x N random matrices. 
The failure arises from an incorrect description of the symmetries of the random-matrix 
system in the limit N + CC. The correct description, which involves integration over both 
non-compact and compact degrees of freedom, is obtained by using the method of super- 
fields. Some implications for the localisation transition in disordered electronic systems 
and the theory of the quantised Hall effect are suggested. 

1. Introduction 

The theoretical treatment of statistical phenomena in many areas of physics makes use 
of random Hamiltonians. Observable quantities are evaluated by averaging over an 
ensemble of physical systems in order to avoid the technically difficult task of performing 
an energy average (or a spatial average, as the case may be) for a fixed realisation of 
the disorder. However, the mathematical operation of ensemble averaging is still 
difficult to perform when we are dealing with 'quenched' averages. In statistical 
mechanics, for example, we wish to average observables such as the free energy log Z 
rather than the partition function Z itself. A well known procedure which has been 
devised for calculating the average of log Z (Edwards and Anderson 1975) is the 
so-called 'replica trick', 

- 
- Z " - 1  
log Z = lim -. 

n-o n 

Instead of averaging log Z directly, one studies first the averaged partition function 
for a system with n replicas (i.e. z"), and then hopes that physical properties of the 
random system can be extracted by analytically continuing n+0.  For a Gaussian 
distribution of the disorder, it is easy to calculate the ensemble average of Z". The 
resulting theory can be studied using the standard (perturbative and non-perturbative) 
techniques of statistical mechanics and field theory and, in this way, a great deal of 
insight has been gained into the physics of spin glasses, polymers, disordered electronic 
systems etc. 

Despite its highly successful application to the treatment of disordered systems, 
the replica trick (1.1) suffers from a serious drawback: it is mathematically ill founded. 
Knowledge of z" for all positive integer values of n need not be sufficient for 
extrapolation to the limit n = 0. Indeed, soon after its introduction by Edwards and 
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Anderson (1975), an example was found where the replica trick gave unphysical results. 
Sherrington and Kirkpatrick (SK) (1975) observed that an Ising spin glass with infinite- 
range interactions, when treated using the replica trick, acquires a negative entropy at 
low temperatures. (We do not discuss recent attempts to resolve these problems by 
breaking the symmetry in replica space.) They speculated that this unphysical 
behaviour might arise from the interchange of the thermodynamic limit and the limit 
n + 0. van Hemmen and Palmer (1979) have argued, however, that for the SK model 
it is permissible to interchange these limits and that the difficulties are to be attributed 
to the non-uniqueness of the analytic continuation n += 0. In particular, the continuation 
process cannot be well defined if z” is non-analytic at n = 0. We completely agree 
with the mathematical content of the paper by van Hemmen and Palmer. However, 
a purely mathematical argument centred around (non-)analyticity leaves us somewhat 
unsatisfied because it gives little insight into the physical mechanism that causes the 
replica trick to break down. The present paper aims to draw attention to the fact that 
problems with the replica trick may occur whenever the theory for a general integer 
value of n does not have the same symmetries as the theory for n = 0. (The precise 
meaning of this statement will become clear in Q 2.) 

Our personal experience with the replica trick stems from its application to the 
study of correlation properties of eigenvalues of random matrices. Spectral correlations 
of random-matrix ensembles are of considerable interest in statistical nuclear theory 
and the physics of small chaotic systems (‘quantum chaos’). From the viewpoint of 
replica theory, spectral n-point correlation functions represent a fertile testing ground 
because in some simple cases these functions can be evaluated analytically by quite 
different methods. We have used the replica trick (Verbaarschot and Zirnbauer 1984) 
to rederive the perturbation expansion in r-’ for the spectral two-point function S,( r )  
of the Gaussian orthogonal ensemble. (With d the mean spacing, S2(r)  measures 
correlations between eigenvalues that are separated by an average of r/ d eigenvalues. 
For definitions see Verbaarschot and Zirnbauer (1984) and 0 2 of the present paper.) 

More recently we discovered, rather to our surprise, that the replica formalism 
permits also a non-perturbative evaluation of S2( r). (In the literature claims have been 
made (Efetov 1983) that attempts at such an evaluation meet with unsurmountable 
difficulties.) We will show in the sequel that the outcome of this calculation disagrees 
with the exact result first derived by Dyson (1962a). A mere demonstration of the 
discrepancy would not deserve particular mention as it only adds to existing knowledge 
concerning problems with the replica trick. What we do consider of great interest, not 
only to workers in the field of random-matrix physics but to a much wider audience, 
is that we can actually perceive the physical reason for the failure. Our analytic 
evaluation of S2(r)  sheds new light on the intricacies and pitfalls of the replica trick, 
and this insight we wish to communicate in the present paper. 

Our result is summarised as follows. The spectral two-point function S2( r )  for the 
Gaussian unitary ensemble (GUE) is evaluated as 

S2( r) = 1 - r-2 (1.2a) 

using replicated commuting variables, and as 

(1.2b) 

using replicated anticommuting variables (Grassmann variables.) The correct result 
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is given by 

s 2 ( r )  = 1 +2ir-* el'sin r. (1.2c) 

All results are derived by reduction to a zero-dimensional nonlinear a-model. The 
formulation in terms of replicated commuting variables leads to a nonlinear a-model 
with non-compact ('hyperbolic') symmetry (Wegner 1979), while the corresponding 
model obtained by using Grassmann variables is characterised by a compact ('elliptic') 
symmetry (Efetov et a1 1980, Pruisken 1984). Neither of these symmetries gives a 
correct description of G U E  eigenvalue correlations. This is most clearly seen for small 
values of r where equation ( 1 . 2 ~ )  diverges as r -* ,  ( 1 . 2 ~ )  as r-'  and ( 1.2b) tends to a 
constant. The correct integral representation of S,( r )  uses both commuting and anti- 
commuting variables ('superfields') and can be reduced to a 'nonlinear supermatrix 
U-model' (Efetov 1983). The pseudo-unitary graded Lie group associated with this 
model involves bosonic as well as fermionic degrees of freedom, of which the former 
are partly compact and partly non-compact, thus yielding a highly complex and 
fascinating geometric setting. 

The essential steps in the derivation of equations (1.2) are given in § 2, with special 
emphasis on convergence and symmetry considerations. In 0 3  we discuss some 
implications of equations ( 1.2) for the localisation transition in disordered electronic 
systems and the theory of the quantised Hall effect. 

2. Evaluation of the CUE two-point function 

Dyson (1962b) has argued on quite general grounds that ensembles of random matrices 
with relevance to physics may have three different types of symmetry, referred to as 
orthogonal, unitary and symplectic. When the matrix elements are taken to be uncorre- 
lated, Gaussian distributed variables, the resulting ensembles are called the Gaussian 
orthogonal (GOE), Gaussian unitary (CUE)  and Gaussian symplectic ensemble (GSE).  

The second ensemble applies to systems with broken time-reversal symmetry, and the 
third and first to time-reversal invariant systems with or without spin-dependent 
interactions. Since the point we wish to make is of a technical nature, we choose to 
consider that particular ensemble which has the simplest mathematical properties, 
namely the GUE. 

Information about spectral correlations of random-matrix ensembles is contained 
in the two-point function S,, 

& ( E , ,  E 2 )  = K 2 T r ( E ,  - H ) - '  Tr(E2-H)- ' .  (2 . la )  

We denote by N the dimension of the Hamiltonian matrix H, and the horizontal bar 
indicates the average over the ensemble. For large values of N, the connected part of 
s2, 

SS(Ei, E,) = & ( E , ,  E , ) -  N-, Tr(Ei  - H)-' Tr(E,- H ) - ' ,  (2 . lb)  

differs from zero only when the (complex) energies E ,  and E2 lie on opposite sides 
of the real axis. In the same limit, S, becomes a function solely of the 'local' distance 
variable r = N( E ,  - E 2 )  measuring E ,  - E, in units of the local mean spacing d K N-'. 

In the asymptotic regime ( r  + CO),  S, describes long-range correlations between the 
eigenvalues, related to the 'stiffness' of the spectrum. This is for example seen from 
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an identity for the variance Z’( p )  of the number of eigenvalues in an interval containing 
p eigenvalues on average (Brody et a1 1981): 

Z’( p )  = Re d s  ( p  - s)SS( m), s = r / r .  (2.2) 5,’ 
At short range ( r  + 0), S2 carries information about the repulsion between neighbouring 
eigenvalues (level repulsion). For the case of the GOE and the GUE, exact expressions 
for a related two-point function, Y2( r) ,  have been given by Dyson (1962a). 

Having expounded the physical meaning of S2,  we now proceed to evaluate this 
function for the GUE by using the replica trick, first with commuting and then with 
anticommuting variables. (The use of anticommuting variables can be viewed as an 
extension of the ordinary replica trick to negative integer values of n.) We will see 
that this calculation provides a simple but non-trivial example where the replica trick 
fails. At the same time, it illustrates the role of symmetries in bringing about the failure. 

2.1. Replicated commuting variables 

Introducing 2 x n x N  complex replicas 4,”(c) ( p = 1 , 2 ;  m = l , 2 ,  . . . ,  n ;  c =  
I ,  2 , .  . . , N), we can represent the G U E  two-point function for Im El > O >  Im E2 as a 
Gaussian integral (see e.g. Schafer and Wegner 1980): 

r 

( 2 . 3 ~ )  

SI = + 1  = -s2,  

To make contact with equation ( 1 . 1 )  we note that (2.3) can also be written as 

4 4 l =  I? fi fi d4,”(c) d4 ,”*(4 .  
p = l  m = l  c = l  

d2 - d2 - 
S2( E, ,  E,) = N-’ ~ log 2 = ( nN)-2 ~ Z“ ,  d E ,  dE2 d E ,  dE2 

( 2 . 3 ~ )  

( 2 . 4 ~ )  

(2.46) 

According t0 the replica prescription, we will evaluate the RHS of equation ( 2 . 3 ~ )  for 
all positive integers n and then take the limit n + 0. As was stated in 0 1,  the merit of 
equation (2.3) derives from the ease with which we perform the average over the 
Gaussian distribution of H :  

e ~ p [ - 2 ~ ( 4 ) ] =  K-’ exp[-fN Tr H’H -=Yl(4)] d[H]= exp[-=Y2(+)], ( 2 . 5 ~ )  

(2.56) 

( 2 . 5 ~ )  

In order to display clearly the symmetries of (2.56), we reorganise Lf2 and separate it 
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into three parts, 

The first part of vanishes as E ,  += E,. In this limit, Y2  acquires an  invariance under 
transformations of the non-compact group U( n, n )  (Wegner 1979) which, adopting 
Wegner’s terminology, we refer to as ‘hyperbolic’ symmetry. Recognition of hyperbolic 
symmetry is essential for the rigour of further mathematical treatment. Due to the 
non-compactness of the parameter space of U(n, n ) ,  the integral in ( 2 . 5 ~ )  diverges for 
E ,  = E*, i.e. in the absence of a symmetry-breaking term. The divergence as such is 
not disconcerting since, as we see from equation (1.2c), S,( r )  does indeed have a 
genuine singularity at the point r = N ( E ,  - E 2 )  = 0. For E ,  f E,, the first part of -Y2 
breaks hyperbolic symmetry and makes the integral convergent. 

In addition to hyperbolic symmetry, Y2  has a n  invariance under unitary transforma- 
tions in the space ofbasis vectors a = 1,2, . . . , N. This invariance suggests the introduc- 
tion of composite variables U via the Hubbard-Stratonovich transformation, 

(2.7) 

As it stands, the decomposition (2.7) is purely formal because we have not yet specified 
the choice of integration contour for U. Two requirements are necessary to make 
further operations mathematically well defined. The first (and obvious) requirement 
is that (2.7) must lead to a convergent &-integral. Second, we will eventually interchange 
the integrations over U and  d, and this is allowed only if the U integration is uniformly 
convergent in 4. 

The most simple-minded approach would be to take U Hermitian. Such a choice 
fails because it results in a real cross-term, 4Tu1242+41u?24z* ,  which is bounded 
neither from below nor from above, leaving us with a badly divergent 4-integral. One 
might attempt to amend this by making the replacement u I2+  iu12 ,  but then the integral 
over u12 becomes divergent. 

Going back to equation (2.6) we realise that all attempts to take U Hermitian (or 
trivial modifications thereof) are doomed to fail because they disregard hyperbolic 
symmetry. (This may seem a trivial point but we elaborate on it to emphasise that the 
non-compact symmetry of the final expression ( 2 . 1 7 ~ )  is actually dictated by conver- 
gence requirements.) One possible parametrisation for U is found by observing that 
hyperbolic transformations on 4 generate a corresponding transformation on U, 

(2.8) 4 -+ 4’ = TI 4-U += U’ = T;’uT2, T2 = S + ~ / ~ T , S - I ” .  

Both TI and  T2 are elements of U(n ,  n ) ,  

TTsT, = s, TlsT,  = s. (2.9) 

Equation (2.8) suggests the following choice for U: 

U = TPT-~ (2.10) 

where P is diagonal and  T runs through the parameter space of U(n,  n). However, 
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for later analysis it is actually more convenient to take T from the coset space 
U(n, n ) / U ( n )  x U ( n ) ,  and include the remaining degrees of freedom in P (Pruisken 
and Schafer 1982): 

(2.11a) 

T + =  T, T € U ( n ,  n) /U(n)  xU(n) .  (2.1 1 b) 

kk' P'= P, Pi;!' = 6,,.P, , 

The parametrisation (2.1 1) implies a change in integration volume, 

d [ ( ~ l =  I ( P )  d[PI d p (  TI, (2.12a) 

(2.12b) 

(2.12c) 

where A p , k  are the eigenvalues of Pp. d p  ( T) is the invariant measure of the coset space 
U( n, n) /U( n )  x U( n) and depends on the particular representation of T used. If we 
choose 

(2.13) 

then d p (  T) takes the astonishingly simple form 

d p (  T)  = n dfkk, dtEk,. (2.14) 
k.k' 

The discovery of equation (2.14) first suggested to us that an exact evaluation of S,  
within the replica formalism should be possible. 

With the parametrisation (2.1 1 )  the (T integral converges uniformly in 4 provided 
we shift the integration contours for the diagonal part of P off the real axis, Pp""+ 
Pp"" - ispv ( v > 0), and add an infinitesimal symmetry-breaking term -iv Tr (TS (7 = 0+) 
in the exponent. The Gaussian integration over C#I is also convergent and can be 
executed to give 

c 

S2 = n-' Tr ( T ~ ,  Tr u12 exp[-Y3(a)] d[u], J ( 2 . 1 5 ~ )  

Y3(u) = f N  T r ( u +  T / N ) ~ +  N Tr log ( E  -U) 

= fN Tr P 2 + T r  P (  T-lvT) + N Tr log ( E  - P ) ,  (2.15 b )  

77, = N (  E, - E ) .  ( 2 . 1 5 ~ )  

Partial integrations have been used to convert the pre-exponential factor in equation 
(2.3a) into that given in (2.15a). In (2.15b) we have also introduced the 'local' 
differences vp which are held fixed in the limit N + 00. 

The rationale behind using the parametrisation (2.1 1 )  is now clear from (2.15b): 
the integration over T requires non-perturbative treatment (for small v), while P can 
be approximated by the solution P;:!' = 6,. 6kk'P: of the saddle-point equation Po = 
( E  - Po)-' .  This approximation becomes exact for N -$ CO if we include the contribution 
from quadratic fluctuations around the saddle point P = Po. 

To keep the remaining steps as transparent as possible we take E in the centre of 
the spectrum ( E  = 0 ) .  In this case the solution of the saddle-point equation is given 

E = ;(El + E2) ,  



Critique of the replica trick 1099 

by P i  = i = -Py. (Note that this is the only saddle point that can be reached without 
crossing the hypersurface defined by the singularities of log ( E  - P).) The expression 
for S2 now reduces to 

S2 = constant X n-' Tr U , ,  Tr ~ ~ ~ 1 ~ = ~ o  exp[i Tr ( T s T - ' ~ ) ]  d p (  T ) .  (2.16) 

Evaluation of the Gaussian integral over 6 P  = P - Po yields an irrelevant factor which 
has been included in the overall constant, together with another factor originating 
from the measure term Z(P)  in (2.12b). We now proceed by transforming to the 
eigenvalues of icrI I = ( T S T - ' ) ~  I as independent variables of integration. Calculating 
the change in the measure, and integrating over angles, we obtain 

n 

h =  1 A,,,, r = 71 - 7 2 .  
m = l  

(2.176) 

This expression for S2 still contains both connected and disconnected parts, the latter 
of which we eliminate by displacing the pre-exponential factor as h + ,i - n. Finally, 
we shift the lower integration bound to zero. The resulting integral can be evaluated 
exactly using the orthogonal polynomial method of Mehta and Gaudin (1960). 
However, it is unnecessary to go through this calculation because a simple rescaling 
of variables ( A  -P A/r) shows that 

S ; ( r )  = - c ( n ) r - 2 - n 2 z  -r-2. (2.18) 

- 
The constant c( n) goes to unity for n + 0, as follows from the requirement limn+o Z" = 1. 
(z" is obtained from (2.17a) by omitting the pre-exponential factor h2 and the factor 
n-2.) Equation (2.18) constitutes the final result of this subsection. 

We have known for some time that r-2 is the first term of the (asymptotic) r-I 
expansion for the GUE two-point function, as generated by the replica method. We 
also knew that low-order corrections vanish identically (this stands in contrast with 
the GOE two-point function, which has non-zero corrections), but now we see that the 
cancellation holds even beyond the level of perturbation theory. This is disastrous 
because equation (2.18) is definitely incorrect. We will return to this point in 0 3. 

2.2. Replicated anticommuting variables 

On a purely formal level, the disagreement between equations (1.2a) and ( 1 . 2 ~ )  can 
be blamed on the analytic continuation n + 0, which need not be unique. This explana- 
tion leaves unanswered the question as to why the replica trick gives the wrong result 
for S2 but perfectly reasonable and correct results for the one-point function (Verbaar- 
schot and Zirnbauer 1984). To get some insight into this problem we use the same 
method of analysis as in 5 2.1, but represent now the generating function log 2 as the 
zero-component limit of a Grassmann integral. As was mentioned earlier, this corre- 
sponds to extending z" to negative integer values of n. The formal treatment using 
anticommuting variables is quite similar to that using commuting variables, and we 
give only a brief account of the most important modifications. 
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We set out from 

(2.196) 

(2 .19~)  

where x and x* are ‘anticommuting c-numbers’ (Grassmann variables). In contrast 
with equation (2.3b), no factors of i in the exponent are needed for convergence. Due 
to the absence of such factors, the ensemble-averaged integrand for E l  = E2 now has 
a compact U(2n) symmetry (‘elliptic’ symmetry), instead of the earlier U(n, n )  sym- 
metry. This essential difference will be seen to persist throughout the calculation and 
survive in the limit n + 0. 

An important simplification related to compact symmetry is that the Hubbard- 
Stratonovich transformation (2.7) can now be carried out with the simple (and natural) 
Hermitian choice for U. There is, however, a subtle point here which needs further 
discussion. In § 2.1 we were actually compelled by convergence requirements to choose 
a parametrisation such as (2.1 l ) ,  leading to a non-compact manifold of saddle points. 
In the present case the Hermitian choice for (+ is made for convenience and not forced 
by arguments of convergence. In fact, we could use the parametrisation of § 2.1 instead. 
This apparent ambiguity will be resolved below equation (2.23). 

Performing the same formal manipulations as in § 2.1 we easily arrive at 

S2 = n-’ Tr uI I Tr w22 exp[ -IN Tr U‘ + N Tr log ( E  - iu)] d[a]. (2.20) I 
The integration now extends over the set of all Hermitian matrices w. 

The next step, which we shall give explicitly, is to discuss the continuous manifold 
of saddle points of the integrand in equation (2.20) for E ,  = E, = 0. (For simplicity, 
we again specialise to the centre of the spectrum.) Expressed in terms of the eigenvalues 
A , ,  of U, the saddle-point equation for (2.20) reads 

Ap,m = 1 I Ap,m. (2.21) 

In the limit of interest (N- .cc) ,  the Jacobian generated by the diagonalisation of U 

does not perturb the position of the saddle points and has been ignored. Equation 
(2.21) has two real solutions A = *l .  The saddle-point manifold of (2.20) is therefore 
given by the set of Hermitian matrices U with eigenvalues * 1. Clearly, this manifold 
is compact and consists of several disconnected pieces, characterised by the number 
of eigenvalues A = +1, say. Due to the absence of singularities in the integrand, all 
submanifolds are accessible, and we have no guidance other than physical intuition 
as to which to choose. In what follows we will only consider the submanifold with n 
eigenvalues A = + 1 and A = - 1 each, which has the maximum dimensionality. 
(Inclusion of other pieces does not affect the essential point we are trying to make, 
namely that the integral is finite for all values of the symmetry-breaking term r =  
N ( E l  - E2.). This manifold can be parametrised as ( T E  U(2n)/U( n )  x U( n ) )  

(2.22) 
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where 
cos e sin e ei*) 

A =  (sin 0 e-'* -cos e 

1101 

(2.23a) 

is diagonal in each block ( p p ' ) ,  

8 = diag Ok, 4 = diag C$k ( k =  1,2 , .  . ., n ) ,  (2.23 b )  

and U ,  and u2 are unitary n x n matrices. 
We are now in a position to motivate better the Hermitian choice for a made above 

equation (2.20). We recall that the parametrisation (2.1 1 )  gives a convergent a-integral 
only if we shift Pp"" off the real axis and add an infinitesimal symmetry-breaking term. 
This operation is consistent with the saddle-point condition for the case of commuting 
replicas but inconsistent with equation (2.21). More precisely, for E ,  = E2 = 0 the 
infinitesimal symmetry-breaking term is7 induces phase oscillations in the integrand 
which become ever more rapid as we leave the point T (  t = 0) = 1 .  In other words, the 
integration in contours for T obtained by restricting equations (2.10) and (2.11) to 
the saddle-point manifold of equation (2.20) (i.e. by putting Pp""' = 8 k k ' P : ;  Py = f 1 = 
-P:), d o  not follow the direction of steepest descent with respect to the symmetry-breaking 
term. This analysis justifies the Hermitian choice for a and shows that compact 
U(2n) /U(  n )  x U( n )  symmetry is the true and unique symmetry of the present problem. 
(Incidentally, it also implies that Wegner's algebraic derivation of symmetry relations 
(Wegner 1983) for the Gaussian ensembles is only valid in perturbation theory. The 
author is, of course, aware of the restricted validity of his proof.) 

Subsequent analysis is closely analogous to that given in 9 2.1. Omitting all the 
details we go straight to the final result, 

n 

S,( r )  = Iim n-' 5 , '  i 2  e i r i  n ( A m l - A m 2 ) '  n dAm, (2.24) 

which differs from equation ( 2 . 1 7 ~ )  by the location of the bounds of integration. This 
is the only, but essential, difference. 

Expression (2.24) is much harder to evaluate than (2.17a) because the orthogonal 
polynomials associated with the weight eCr* ( r  + ir)  over the interval [- 1, + 11 do not 
belong to the class of 'classical' orthogonal polynomials. (A simplification occurs for 
r = 0, where these orthogonal polynomials reduce to Legendre polynomials.) Neverthe- 
less, equation (2.24) allows us to make several important statements. (i)  For r+w,  
the compactness of the integration interval becomes essentially unimportant and thus 
equation (2.24) gives the correct asymptotic behaviour -r-' in this limit. (ii) The 
method of Mehta and Gaudin (1960) canbe  used to evaluate expression (2.24) at the 
point r = 0. We find the result S,(O) = Z" (4n' -  I ) - '  which, although positive for all 
integers n = 1,2, .  . . , becomes negative at n = 0. This cannot be correct because the 
general analytic properties of S2 require that Re S 2 ( 0 )  > 0. ( In  fact, Re S2( r )  + +CO for 
r + 0.) The finiteness of S 2 ( 0 )  is due to the finiteness of the integration area, which in 
turn results, for N+w, from the compact U ( 2 n )  symmetry that was inherent to the 
formulation right from the very outset. (iii) Comparison with § 2.1 shows that the 
systems obtained by choosing a positive or negative number of replicas differ drastically, 
and irreconcilably, by their symmetry properties. This indicates the impossibility of 
extrapolating to the limit n = 0. 

We conclude this subsection by mentioning that the present formulation leads to 
difficulties already in the calculation of the one-point function, due to an ambiguity 

" - 0  m 1 c m 2  m = l  
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in the choice of saddle point. In this sense, we might say that the ‘performance’ of 
anticommuting replicas is even worse than that of commuting ones. 

2.3. Method of superfields 

In this section we show how to evaluate the CUE two-point function correctly, by 
avoiding the replica trick and using the method of superfields instead. The following 
calculation is to a large extent a synthesis of mathematical steps given in 00 2.1, 2.2 
and so we can afford to be brief without much loss of clarity. We acknowledge that 
our analysis was inspired by an ingenious but mystifying article of Efetov (1983). A 
very detailed and complete exposition of the method will be given in another publication 
(Verbaarschot et al 1985). 

Introducing a graded vector (or ‘supervector’) 0 composed of one (ordinary) 
complex and one Grassmann variable, 

(2.25) 

we can express S ,  as 

T,(Q) = -i c 0;(c)J,(~, a,,-- H ~ ~ , ) & Q , ( C ~ ) .  (2.26b) 

Our choice of normalisation for the Grassmann integral is jx dX = I / ( ~ T ) ” ~ .  We find 
it convenient to use the adjoint of the second kind (Rittenberg and Scheunert 1978, 
Efetov 1983), together with the corresponding convention for matrix transposition. 

p cc’ 

If we define a ‘dyadic’ product Spps by 

(2.27) 

then the ensemble-averaged exponential exp( -g1) can be written in the form exp(-T2) 
where 

1 T2(0) = -i 1 Ep Trg Spp +- Trg SpPSp,,, 
P 2 N  PP’ 

(2.28) 

and Trg denotes the graded trace (supertrace). The pseudounitary graded symmetry 
of T2 for E ,  = E 2  has been discussed by Wegner (1983). The Hubbard-Stratonovich 
transformation (2.7) now requires the introduction of graded composite variables U, 
which we parametrise as 

( 2 . 2 9 ~ )  

(2.29b) 
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Here, all entries on the diagonal of &pp. are commuting and  entries on the off-diagonal 
positions are anticommuting variables. All variables are independent. T ]  I and T , ~ ,  

which we take as real, are multiplied by factors of i to cancel the minus sign from the 
graded trace and  obtain convergent integrals. We note that the variables T , , ,  T ~ ~ ,  b 
and  b* on the fermionic-fermionic block form i times a Hermitian matrix (see § 2.2). 
Again for reasons of convergence, the integration contour in cr I I  and  U,, cannot be 
conducted along the real axis (hyperbolic symmetry!) and  is modified in accordance 
with the discussion in § 2.1. For the parametrisation (2.29b) and  621 are related 
through 

(2.30) 

This was the motivation for inserting the factor of i in front of v1 in equation (2.29b). 
Executing the Gaussian integrations over @, we again obtain an  expression like 

equation (2.15), with the obvious replacements n-l Tr c r I I  + U , ] ,  n-' Tr U,,+ (+22, T r +  
Trg. To discuss the saddle-point manifold of the resulting Lagrangian for El = E, = 0, 
we first replace the Grassmann variables 77], 777, 772 and 77; by zero. The discussion 
then reduces to the previous discussion given in § §  2.1,2.2. Putting back the Grassmann 
degrees of freedom, we see that the saddle-point condition is satisfied by U = -iTsT-l 
where T is obtained from (2.13) by making the substitutions 

t+ + 3,*, t + e,]. (2.31) 

An equivalent parametrisation of the saddle-point manifold (Efetov 1983) is given by 

( 2 . 3 2 ~ )  

\ 0 ip2 0 +ih, '  

A I  =cosh  01, A 2  = cos 02 ,  p ,  = sinh e, e'"), p2 = sin 6 2  e'"?, (2.326) 

U =  1+(Y+;Cu2, U =  l+iip-$', 

( 2 . 3 2 ~ )  

The ranges of integration for the ordinary parts of the commuting variables are 
0 < e,  < CO, 0 < O2 S 7r,O < d , ,  c $ ~  S 27r. Equation (2.32) uncovers the true and  fascinating 
symmetry of the random-matrix system for N + m :  it contains both compact and 
non-compact degrees of freedom, and these are joined together by odd elements of a 
Grassmann algebra! 

A remark concerning the precise definition of hi and pl ( i  = 1,2)  is in order here. 
Since these variables arise from diagonalisation of a graded matrix, they contain 
nilpotent elements of the Grassmann algebra, in addition to the ordinary part. If we 
choose A ,  and  h2 as the new variables of integration (as we d o  below), then these 
nilpotent parts must be eliminated by a 'deformation' of the integration contour. This 
non-trivial point leads to complications (see below) left totally unmentioned by Efetov 
(1983). 

As before, the integration over fluctuations around the saddle-point manifold yields 
a trivial factor (in this case just unity) if we transform to the representation given in 
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equation (2.1 l ) ,  with the appropriate modifications in the definition of P and T taking 
into account the symmetries of a. It also remains true that the invariant measure of 
the coset space formed by the matrices T equals unity. Transforming back to the 
elements of G 1 2  (and G 2 1 )  as independent variables of integration, we obtain 

S 2 ( r ) =  1 a , l ~ 2 2 e x P [ i r ( ~ l  -A2)1d/J(g), (2.33) 

where the invariant measure now takes the form 

d p ( u )  = ( A 1 - t A 2 ) 2  d a  da*  d b  db* dT1 dTT d v 2  d T f .  (2.34) 

Finally, we use Efetov’s clever trick (Efetov 1983) of choosing the ‘eigenvalues’ A ,  and 
A 2  as integration variables. (Without this trick, the evaluation of equation (2.33) is 
still a daunting job and probably hopeless without the aid of algebraic computer 
programs.) The change in integration volume is given by 

A I A 2  

d a  da*  d b  db* = d p ,  d p ?  d p 2  d p f  = A ,  dAl A 2  dA2 d 4 ,  d42 ,  

dT,  dTT d772 dT;=(A:-A:)-2 d a  d a *  d p  dp*.  

( 2 . 3 5 ~ )  

(2.356) 

Equation (2.356) provides a nice example that the transformation properties of Grass- 
mann variables are ‘contragredient’ to those of ordinary variables. (For ordinary 
variables the factor in equation (2.35b) would have been (A: - A:)+2 = (I  pull2- 1 p212)+2.) 
I t  remains to express the pre-exponential factor in (2.33) in terms of the new variables 
of integration: 

( 2 . 3 6 ~ )  

(2.36b) 

The decomposition made in the second line yields the decomposition of S2 into a 
connected and a disconnected part. To see that, we observe that the integral obtained 
by replacing aliaz2 in (2.33) with - ( ~ : ~ + a ; ~ ) / 2  has the value 

(2.37) 

which equals the product of the GUE one-point function with its complex conjugate in 
the centre of the spectrum ( E  = 0 ) .  This term is disconnected and exhausts the 
disconnected contributions to S 2 .  We can therefore identify the second term in (2.36b) 
as the one that yields the connected part of S2.  It is now highly fortunate (though not 
accidental) that this term contains the maximum number of Grassmann variables, for 
this allows us to drop the nilpotent parts of A , ,  A*, 4,  and 42r yielding four simple 
real integrations. We understand that such a ‘deformation’ of integration contour 
could also be made for the terms in a11a22 of lower than maximum order in the 
Grassmann variables. However, for these terms one is forced to undertake a careful 
analysis of contributions from the singularity in the integrand arising from equation 
(2.366). The existence of the decomposition (2.35b) relieves us of this burden. 

The last, and trivial, step is to perform the remaining integrations, yielding 

-L( a l l  2 + ( ~ : ~ ) = - ~ [ ( - i ) ~ + ( + i ) ~ ] = + l  =(-i)(+i) ,  

+ I  

S 2 ( r ) =  l+j:ldA, dAzexp[ir(Al-A2)]= 1+2ir-2e”sinr .  (2.38) 

(Note that the factor of 47~’  from the integrals over 4 ,  and 42 is cancelled by the 

- I  
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Grassmann integrations.) Equation (2.38) represents the correct result for S, in the 
limit N+w. 

The integral representation (2.38) shows very nicely how the two-point function 
makes the (expected) crossover from an asymptotic behaviour - r - 2  to the short-range 
behaviour - r - ’ .  (One can argue on very general grounds that the real part of the 
two-point function for any  random-matrix ensemble must have a 6-function at the 
origin, Re S , ( r )  - 6 ( r ) .  This requires a simple pole in S ,  at r = 0.) In the asymptotic 
regime r + 03, which in the terminology to be used in 0 3 might be called the ‘weak- 
coupling’ limit, the compactness of one of the integrations is irrelevant for the qualitative 
behaviour of S,. However, for small r (‘strong-coupling’ limit), compact symmetry is 
absolutely essential for obtaining the correct analytic properties of S,.  

3. Discussion 

The purpose of this paper was to demonstrate explicitly, and conclusively, that for 
N + CD the two-point function S,( r )  of the Gaussian unitary ensemble (GUE)  is evaluated 
incorrectly by combining the replica trick with naive extrapolation to the limit n = 0. 
An equivalent statement applies to the m-point functions ( m  > 1)  for the Gaussian 
orthogonal and Gaussian symplectic ensembles. 

As is seen from equation (2.38), the correct description of G U E  eigenvalue correla- 
tions involves the combination of one compact and one non-compact integration. The 
replica trick, however, can only accommodate either non-compact symmetry (when 
commuting variables are used) or compact symmetry (when anticommuting variables 
are used). For this reason, the replica trick gives meaningful results only in the 
weak-coupling limit r + CO, where the distinction between compact and non-compact 
symmetry loses relevance. 

It is worth emphasising once more that the problems regarding symmetry are 
intimately connected, via the saddle-point equation for the composite variables a, with 
the limit N+cD.  There is of course little hope that the multi-dimensional integrals 
appearing in the replica formalism for S, can ever be evaluated non-perturbatively for 
a finite value of N. However, if the result were available, we would expect analytic 
continuation to n = 0 to be possible and yield the correct analytic behaviour of S, also 
for r = 0. 

Finally, we wish to discuss some implications of equations (1.2) for the localisation 
transition in disordered electronic systems. Being nuclear physicists, we do not feel 
authorised to make definite statements in this field, and so the following discussion is 
merely intended as a suggestion. 

The connection with localisation theory derives from the work of Schafer and 
Wegner (1980) and of McKane and Stone (1981). (In fact, the first part of the 
calculation in § 2.1 is nothing but a specialisation to the zero-dimensional case of the 
work of Schafer and Wegner. Note also that since we are dealing with the case of a 
unitary ensemble, the following remarks apply to the localisation transition in time- 
reversal non-invariant systems.) These authors have used the replica trick with commut- 
ing fields to show that the mobility-edge behaviour of disordered electronic systems 
in d dimensions is described by a nonlinear a-model, 

Z = exp(-g-*S[a]) d p ( a ) ,  I ( 3 . l a )  
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S [ a ]  = Tr (d,a)2 ddx + symmetry-breaking term (3.16) 

n = O .  ( 3 . 1 ~ )  

J 
U(n, n ) lU(n )x  U(n) ,  

Critical exponents for the localisation transition in 2 + E dimensions can be calculated 
by analysing the weak-coupling renormalisation group for (3.1). This analysis has 
been carried as far as four-loop order by Hikami (1983). The most stunning outcome 
of his work is that corrections to the critical exponent for the conductivity of order E, 

E’ and (and probably also of higher order) vanish identically. It is interesting to 
speculate on the extent to which this result may change when the replica trick is 
abandoned in favour of the superfield formalism, yielding the (correct) symmetry for 
U given in equation (2.31). The only work in this direction which we are aware of is 
that of Efetov (1983). His results agree with those of Hikami to the order calculated. 
This is hardly surprising because Efetov, like Hikami, uses the weak-coupling renor- 
malisation group ( E  expansion) which gives identical results for the compact and 
nonkompact models, apart from certain sign changes in the /3 function. (Non- 
perturbative effects due to the compactness of the fermionic-fermionic sector are not 
‘seen’ by the E expansion. Of course, the Grassmann fields appearing in the superfield 
formalism simply take the role of the n + O  limit in cancelling vacuum graphs.) The 
extreme weak-coupling limit is realised in exactly two dimensions, with a fixed point 
at g = 0, and for this case the models of Efetov and of Schafer and Wegner should be 
equivalent in the asymptotic scaling regime. 

In three dimensions the effect of compact symmetry seems less clear. To strengthen 
our case we may invoke the analogy with four-dimensional QCD. Recent Monte Carlo 
simulations (Seiler et al 1984) have shown that compact and ‘non-compact’ QCD behave 
quite differently on the lattice. To be sure, both models are asymptotically free, but 
the non-compact model differs from Wilson’s compact theory in that no evidence for 
confinement has been found for all values of the coupling accessible to numerical 
simulation. This confirms the (plausible) expectation. that compact symmetries are 
more effective in disordering a system. 

Information on the effect of compact symmetry could be gained by inquiring into 
the role played by topologically non-trivial field configurations. Instantons for the 
supermatrix a-model, which exist in two dimensions (see below), are also present in 
three dimensions, due to the existence of a non-trivial map S3 + S2 (Wilczek arid Zee 
1983). We do not know whether these instanton solutions affect the critical behaviour 
or simply act as a ‘background’. 

This and related questions could, in principle, be studied via the high-temperature 
(strong-coupling) series for the two-particle Green function. Unfortunately, such an 
expansion scheme is difficult to implement due to the non-compact degree of freedom 
in a. An alternative approach would be to pass from (3.1) to the Hamiltonian version 
of the theory, and use the resulting quantum Hamilton operator for developing the 
strong-coupling series. 

More concrete statements can be made about the theory of the quantised Hall effect 
as recently developed by Levine et a1 (1983) and Pruisken (1984). These authors argue 
that Green functions for the disordered electronic system can be generated from a 
nonlinear a-model even when the system is subjected to a strong magnetic field. The 
corresponding Lagrangian differs in form from (3.lb) only by the addition of a 
topologically invariant term. It is argued that this topological invariant changes the 
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long-distance behaviour of the system, and, thereby, gives rise to extended states. Such 
an argument represents an interesting advance because it reconciles the established 
theory of localisation in two dimensions with the experimental observation of a 
quantised Hall conductance. However, Levine et a1 use replicated fields for dealing 
with the disorder and, cautioned by the experience with our zero-dimensional ‘toy 
model’, we are reluctant to accept without scrutiny any non-perturbative prediction 
based on such treatment. Actually, there seems to exist some confusion (Pruisken 
1984) as to the proper choice of symmetry for the replica matrix u. The theoretical 
derivation has been given for two alternative formulations, differing by the choice of 
commuting or anticommuting fields in the representation of the generating functional. 
As is seen from 00 2.1,2.2, the second choice leads to a model with U(2n)/U(n) x U ( n )  
symmetry, while the first choice gives rise to the corresponding non-compact symmetry, 
U( n, n) /U(  n )  x U( n ) .  Of these symmetries, only the former admits instantons with 
finite action, which are required for the mechanism leading to the appearance of 
extended states. (Needless to say, in this situation, Levine et al settled for anticommut- 
ing replicas leading to the compact model.) 

The resolution of this ambiguity is now trivial in the light of what we said earlier. 
The formalism of Levine et a1 can be put on a sound theoretical basis by replacing 
replicated Grassmann fields with superfields. Comparison of 00 2.2 and 2.3 suggests 
that the derivation of the effective super-Lagrangian requires only minor modifications 
of Pruisken’s argument. From equation (2.32) it is easy to see that the resulting theory 
allows for topological excitations, which turn out to be equivalent to those of the O(3) 
nonlinear u-model. To see this equivalence, we recall that the invariant measure 
associated with (2.32) is given by 

(3.2) 

The bosonic-bosonic fields a and a* are taken from the trivial topological sector 
(a ,  a *=O)  and can be treated in (weak-coupling) perturbation theory along with the 
Grassmann fields T , ,  TT, 772 and q$. Retaining the full topology only for the fermionic- 
fermionic fields b and b*, the invariant measure (3.2) reduces to 

dp(uFF)  = A;’ db  db*. (3.3) 
(We note that the numerator of (3.2) serves to make the Grassmann integrations 
invariant.) The RHS of equation (3 .3)  is, in fact, the invariant measure on the manifold 
of matrices 

cos 8 sin 8 el4) = 1 O).,, 
sin 6 e-im -cos 6 0 -1 ~ F F  = 

UEU(2) /U( l )XU(l ) ,  

and leads to the following topological invariant: 

I =  1 A-’  ( a b  ab* ab* ab)  d2 X. 
ax, ax, ax, ax, 

With the definitions 

b = sin 6 ei4 = s2 + is3, 

b* = sin 6 e-i’ = s2 - is3, (3.6) ( 1  - b*b)”2 = cos 6 = s,, 
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we obtain the familiar action, 

and topological invariant, 

ax, ax2 ax, ax, (3.8) 

of the O(3) nonlinear a-model, which has been the subject of intensive study. In 
particular, instanton solutions for this model have been studied by Belavin and Polyakov 
(1975) and, more recently, by Gross (1978). The results of these papers will therefore 
be of direct use in completing the theoretical description of the quantised Hall effect. 

A final word of explanation may be helpful. Due to graded symmetry, the existence 
of instanton solutions has consequences which are more subtle than usual. The action 
5 9 d2x is invariant under global graded transformtions, 

&,,(x)+ u&,*(x)v-l, &2,(x) + u&2,(x)u-'.  (3.9) 

On the other hand, the aforementioned instanton solutions break graded symmetry 
by their non-trivial topological structure in the fermionic-fermionic sector. This implies 
that integration over fluctuations around the instanton solution gives identically zero, 
due to the existence of a massless mode associated with the broken graded symmetry. 
(Note that the massless mode is a Grassmann mode ('Goldstone fermion') and thus 
yields zero rather than infinity.) We conclude that instantons do not contribute to the 
partition function and conserve the constraint 2 = 1. The situation is very different 
when we calculate physical observables such as the two-particle Green function 
K ( q ,  E , ,  E,). (The definition of K is found in Schafer and Wegner (1980).) In this 
case the global graded symmetry of the integrand is broken by the quantity to be 
averaged, a * ( q ) a ( q ) .  As a result, the mass of the Goldstone fermion becomes finite 
and instantons do yield a non-vanishing contribution. 
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